Salk Institute

Technologies Available for Licensing

Search Results - induced pluripotent stem cells

4 Results Sort By:
Peptides for Efficient Chondrogenic Differentiation
Peptides for Efficient Chondrogenic Differentiation Activin/BMP2 chimeric ligands that direct human adipose-derived stem cells to chondrogenic differentiation in a reproducible and highly efficient manner. INVENTION: Human adipose-derived stem cells (hASCs) can be easily isolated and their plasticity has been well characterized. Several TGF...
Published: 12/10/2013   |   Inventor(s):  
Keywords(s): Activin, Adipocyte Differentiation, Adipose Stem Cells, Adipose Tissue, Belmonte, BMP-2, Cartilage, Cartilage Damage, Cartilage Injury, Cartilage Repair, Cell Culture Media, Cell Lines, Chimeric Protein, Chondrocyte, Differentiation, Induced pluripotent stem cells, iPSC, Mesenchymal Stem Cells, Protein Modification, Proteins, Regenerative Medicine, Reprogramming, TGF
Category(s): Regenerative Medicine, Research Reagents
Epigenetic Signatures to Standardize Manufacture of Induced Pluripotent Stem Cells
Epigenetic Signatures to Standardize Manufacture of Induced Pluripotent Stem Cells The method allows for generating stem cells to good manufacturing practice (GMP) quality for clinical-grade cells. INVENTION: The reprogramming process, by which mature somatic cells acquire pluripotent cellular properties resembling those of embryonic stem ce...
Published: 11/6/2013   |   Inventor(s):  
Keywords(s): DNA methylation, Ecker, Epigenetics, GMP, Good manufacturing practice, Induced pluripotent stem cells, Manufacturing, Regenerative Medicine, Reprogramming, Stem cell quality control, Stem Cells
Category(s): Regenerative Medicine, Research Reagents
Fast Production Method Increases Stem Cell Yield, Safety
Fast Production Method Increases Stem Cell Yield, Safety Indirect lineage conversion of human cells has the potential to generate multiple cell lineages in an efficient and safe manner. INVENTION: Investigators at the Salk Institute have developed a faster and safer method for the generation of vascular progenitor cells from adult human fib...
Published: 11/6/2013   |   Inventor(s):  
Keywords(s): Belmonte, Canine Stem Cells, Cardiovascular Disease, Cell Culture Media, Cell Lines, Equine Stem Cells, Indirect Lineage Conversion, Induced pluripotent stem cells, Ischemia, Lineage Conversion, Neural Stem Cells, Neurogenesis, Regenerative Medicine, Reprogramming, Stem Cells, Vascular disease, Vascular progenitor cells
Category(s): Regenerative Medicine, Cardiovascular, Animal Health
Versatile Method for Producing Induced Pluripotent Stem Cells (iPSCs) from Any Somatic Starter Cells
Versatile Method for Producing Induced Pluripotent Stem Cells (iPSCs) from Any Somatic Starter Cells Method eliminates the need for SOX2 or OCT4 to generate human iPSCs from any somatic cell type. INVENTION: Investigators at the Salk Institute have developed a versatile method for reprogramming mature differentiated somatic cells into plurip...
Published: 10/11/2013   |   Inventor(s):  
Keywords(s): Belmonte, Canine Stem Cells, Cell Culture Media, Cell Lines, c-MYC, Equine Stem Cells, Induced pluripotent stem cells, iPSC, KLF4, OCT4, Regenerative Medicine, Reprogramming, SOX2, Stem Cells
Category(s): Cardiovascular, Inflammation, Regenerative Medicine, Animal Health
© 2017. All Rights Reserved. Powered by Inteum      

Get Involved
Join our online community
Facebook    Facebook
Twitter    Twitter
YouTube    YouTube
RSS    RSS
Contact
Salk Institute for Biological Studies
Street: 10010 North Torrey Pines Rd
City: La Jolla, CA 92037
Email: webrequest@salk.edu
Phone: 858.453.4100
Charity Navigator Rating
© Copyright 2012 Salk Institute for Biological Studies About Scientists & Research News & Media Events Support